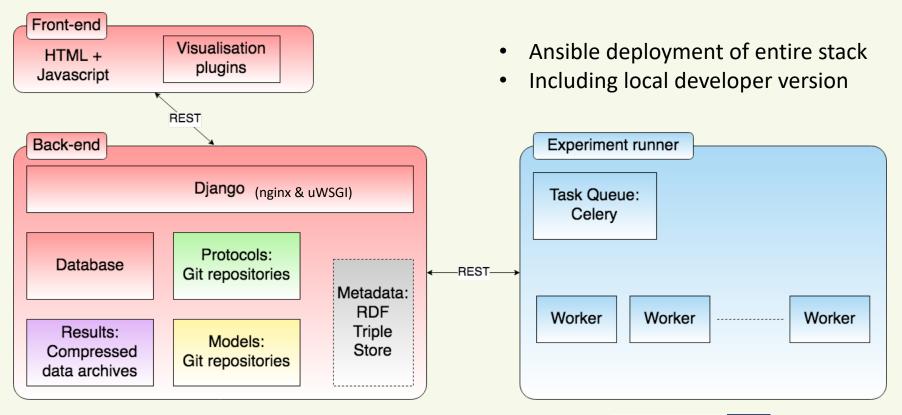


Nottingham


Web Lab 2 – architecture overview

Jonathan Cooper, UCL

Web Lab 2 Architecture

The University of

Nottingham

Developing the user interface

- Live demos
 - WL1: <u>https://chaste.cs.ox.ac.uk/WebLab</u>
 - WL "1.5":
 - https://muck.cs.ox.ac.uk/FunctionalCuration & https://lofty.cs.ox.ac.uk/FunctionalCuration
 - WL2: https://scrambler.cs.ox.ac.uk

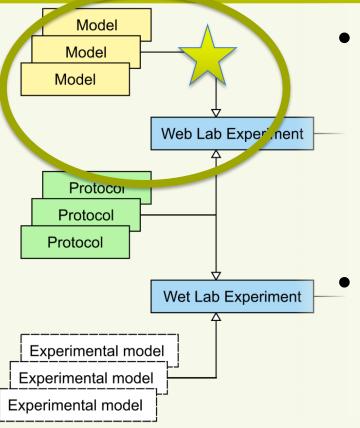
Representing information

- How do we represent models, protocols, data, fitting specifications, results, ... so as to
 - Exploit commonalities?
 - Make them useful to other tools / researchers?
 - Easily import from other sources?
 - Make connections and find information?

Representing information

- Models and protocols: version controlled repositories, with OMEX manifest
- Fitting specification: a type of protocol?
 - Can it be applied to any model?
 - Has more inputs: model, protocol and ref data
 - Results include parameter distributions
- Data: file formats?

Nottingham


Manipulating CellML models

Asif Tamuri, UCL

Conceptual overview

CellML format describes model

- ODE system of cardiac cells
- Equations in MathML
- Variables, Connections, Units, Metadata
- Environment to manipulate the model
 - Prepare for solving

20 June 2018

cellmlmanip library

UCL

- Overlaps with PyCML
- Translate CellML maths

Sympy equations

 Annotate/manipulate equations <math><apply><eq/><apply><diff/><bvar><ci>t ime</ci></bvar><ci>m</ci></apply><apply><mi nus/><apply><times/><ci>alpha_m</ci><apply> <minus/><cn cellml:units="dimensionless"> 1</cn><ci>m</ci></apply></apply><tim es/><ci>beta_m</ci></ci></apply></apply></apply y></apply></math>

Eq(Derivative(m(time), time), alpha_m*(-m + 1.0) - beta_m*m)

Eq(Derivative(m(time), time) * dimensionless/millisecond, alpha_m/millisecond * (-m*dimensionless + 1.0*dimensionless) -beta_m/millisecond * m*dimensionless)

The University of

Nottingham

Possible discussions/work

- Tests for mathml2sympy transpiler
 - Multiple equalities, Sympy Symbol equality, interesting/difficult maths
- Unit handling
 - Quirks of Sympy unit handling
 - Conversion/simplification/checking
 - …alternatives?!

Nottingham

Annotation and ontologies

Jonathan Cooper, UCL

Annotations in Web Lab 1

- RDF embedded within CellML files
- "Oxmeta" ontology from the Chaste project

 Just the terms we've needed for electrophysiology
- Protocols reference these URIs
 - E.g. oxmeta:membrane_voltage
 - List of optional/required URIs stored in DB
- Javascript drag & drop annotation tool for models

Future annotation directions

- Improvements in organising annotations
 - Separate annotation files in repositories
 - Which predicates to use
- Use of community-agreed ontologies
- Search & (more) reasoning
 - Facilitated by triple store

Nottingham

Goals for the Web Lab Workshop

Discussion

20 June 2018

What are the key issues around building mathematical models of biology from experimental data?

Key issues

Workshop working groups

- Roadmap / white paper publication
- Specifying & running experiments
- Inference tools & fitting experiments
- CellML handling & model manipulation
- Repository interfaces (and data stores)
- Annotation & ontologies
- User interface design & information architecture

